RE
R. Eelkema
145 records found
1
...
Ultrafast spectroscopy can be used to study dynamic processes on femtosecond to nanosecond timescales, but is typically used for photoinduced processes. Several materials can induce ultrafast temperature rises upon absorption of femtosecond laser pulses, in principle allowing to
...
The controlled release of drugs using local ionizing radiation presents a promising approach for targeted cancer treatment, particularly when applied in concurrent radio-chemotherapy. In these approaches, radiation-generated reactive species often play an important role. However,
...
Dynamic covalent (DCv) ureas are highly diverse chemical moieties and have become one of the most used motifs in self-healing materials and beyond. This review summarizes the historical development, properties, and applications of DCv ureas in different fields of organic chemistr
...
We present an approach for detecting thiol analytes through a self-propagating amplification cycle that triggers the macroscopic degradation of a hydrogel scaffold. The amplification system consists of an allylic phosphonium salt that upon reaction with the thiol analyte releases
...
Dextran-based hydrogels are promising therapeutic materials for drug delivery, tissue regeneration devices, and cell therapy vectors, due to their high biocompatibility, along with their ability to protect and release active therapeutic agents. This report describes the synthesis
...
In living systems adaptive regulation requires the presence of nonlinear responses in the underlying chemical networks. Positive feedbacks, for example, can lead to autocatalytic bursts that provide switches between two stable states or to oscillatory dynamics. The stereostructur
...
Polycationic carriers promise low cost and scalable gene therapy treatments, however inefficient intracellular unpacking of the genetic cargo has limited transfection efficiency. Charge-reversing polycations, which transition from cationic to neutral or negative charge, can offer
...
In the quest for stimuli-responsive materials with specific, controllable functions, coacervate hydrogels have become a promising candidate, featuring sensitive responsiveness to environmental signals enabling control over sol-gel transitions. However, conventional coacervation-b
...
The field of supramolecular chemistry is rapidly progressing, transitioning from the creation of thermodynamically stable systems found in local or global minima on the free energy landscape to the development of out-of-equilibrium systems that rely on chemical reactions to estab
...
Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strategy
...
Over the last few decades, the study of more complex, chemical systems closer to those found in nature, and the interactions within those systems, has grown immensely. Despite great efforts, the need for new, versatile, and robust chemistry to apply in CRNs remains. In this Featu
...
Hydrogels that can disintegrate upon exposure to reactive oxygen species (ROS) have the potential for targeted drug delivery to tumor cells. In this study, we developed a diphenylalanine (FF) derivative with a thioether phenyl moiety attached to the N-terminus that can form supra
...
Combination of therapies is a common strategy in cancer treatment. Such combined therapies only have merit provided that there is superior therapeutic outcome with fewer side effects, compared to single therapies. Here, this work explores the possibility to combine chemotherapy w
...
Living systems can respond to their environment through signal transduction cascades. In these cascades, original stimuli are amplified and translated into reaction or assembly events. In an effort to instill synthetic materials with biomimetic responsivity, we report an aggregat
...
Shunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can ena
...
Dynamic covalent (DCv) ureas have been used abundantly to design self-healing materials. We demonstrate that apart from self-healing materials, the species present in the equilibrium of DCv ureas can be employed as responsive organocatalysts. Easily controllable stimuli like heat
...
Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a
...
The redox balance in tumor and diseased cells often leads to the production of reactive oxygen species (ROS). Many ROS-responsive materials based on sulfur oxidation have been reported with the goal of achieving controlled delivery at the tumor. However, these materials often lac
...
A variety of polymer micelles are designed for the delivery of chemotherapeutic drugs to tumors. Although the promise of these nanocarriers is very high, in the clinic the effectivity is rather limited. Determining the in vivo fate of the micelles can greatly help to improve this
...
In certain tumor and diseased tissues, reactive oxygen species (ROS), such as H2O2, are produced in higher concentrations than in healthy cells. Drug delivery and release systems that respond selectively to the presence of ROS, while maintaining their stabil
...