AD

A.G. Denkova

109 records found

Irradiation of aqueous solutions containing alkyl chlorides generates peroxyl radicals by reactions of alkyl chlorides, aqueous electrons, and dissolved oxygen. The peroxyl radical can oxidize thioethers to sulfoxides, a transformation that has relevance for targeted or triggered ...
The original publication of this article contained an incorrect author name. The incorrect and correct information is listed in this correction article. The original article has been updated.
A combination of spontaneous Raman, stimulated Raman, and photothermal expansion (AFM-IR) spectromicroscopy is reported for probing the impact of different radiation doses (2–10 Gy) on U87 glioma cells ex vivo. Most significant are alterations in spectral profiles caused by radia ...
Chromium-51 (51Cr) is an attractive radionuclide for diagnosis, which is usually applied for red cells and platelet radiolabeling. However, commercially available 51Cr produced in nuclear reactors via neutron activation requires long irradiation times and complex separation metho ...
The controlled release of drugs using local ionizing radiation presents a promising approach for targeted cancer treatment, particularly when applied in concurrent radio-chemotherapy. In these approaches, radiation-generated reactive species often play an important role. However, ...
The relatively high linear energy transfer of Auger electrons, which can cause clustered DNA damage and hence efficient cell death, makes Auger emitters excellent candidates for attacking metastasized tumors. Moreover, gammas or positrons are usually emitted along with the Auger ...
Objective: To investigate the potential of hybrid Pd/Fe-oxide magnetic nanoparticles designed for thermo-brachytherapy of breast cancer, considering their specific loss power (SLP) and clinical constraints in the applied magnetic field. Methods: Hybrid nanoparticles consisting of ...
Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by gen ...
Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ...
While hyperthermia has been shown to induce a variety of cytotoxic and sensitizing effects on cancer tissues, the thermal dose–effect relationship is still not well quantified, and it is still unclear how it can be optimally combined with other treatment modalities. Additionally, ...
Background: The radionuclide Ga-68 is commonly used in nuclear medicine, specifically in positron emission tomography (PET). Recently, the interest in producing Ga-68 by cyclotron irradiation of [68Zn]Zn nitrate liquid targets is increasing. However, current purificati ...
Two porphyrinic metal-organic frameworks (PCN-222 and PCN-224) were prepared and their potential as molybdenum adsorbents for the 99Mo/99mTc generator was explored. The molybdenum adsorption properties of the two adsorbents, including adsorption kinetics and ...
Background: The [177Lu]Lu-DOTA-TATE mediated peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) is sometimes leading to treatment resistance and disease recurrence. An interesting alternative could be the somatostatin antagonist, [177
Combination of therapies is a common strategy in cancer treatment. Such combined therapies only have merit provided that there is superior therapeutic outcome with fewer side effects, compared to single therapies. Here, this work explores the possibility to combine chemotherapy w ...
Background: Radionuclide therapy (RNT) has become a very important treatment modality for cancer nowadays. Comparing with other cancer treatment options, sufficient efficacy could be achieved in RNT with lower toxicity. β emitters are frequently used in RNT due to the ...
Background: Treatment of early-stage breast cancer currently includes surgical removal of the tumor and (partial) breast irradiation of the tumor site performed at fractionated dose. Although highly effective, this treatment is exhaustive for both patient and clinic. In this stud ...
The cerium-based metal–organic framework UiO-66 (Ce) was examined as a potential adsorbent for the 99Mo/99mTc generator. The results showed that the adsorbent had an outstanding adsorption performance, reaching up to 475 mg/g adsorption capacity at pH 3. An ...
A variety of polymer micelles are designed for the delivery of chemotherapeutic drugs to tumors. Although the promise of these nanocarriers is very high, in the clinic the effectivity is rather limited. Determining the in vivo fate of the micelles can greatly help to improve this ...
Heterostructured magnetic nanoparticles show great potential for numerous applications in biomedicine due to their ability to express multiple functionalities in a single structure. Magnetic properties are generally determined by the morphological characteristics of nanoparticles ...
In certain tumor and diseased tissues, reactive oxygen species (ROS), such as H2O2, are produced in higher concentrations than in healthy cells. Drug delivery and release systems that respond selectively to the presence of ROS, while maintaining their stabil ...