MF

14 records found

Authored

Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambigu ...

Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon that has been repurposed as a biophysical tool to measure nanometer distances. With FRET by DNA eXchange, or FRET X, many points of interest (POIs) in a single object can be probed, overcoming a major ...

Next-Generation Protein Identification

Advancing Single-Molecule Fluorescence Approaches

Proteins are the workhorses of the cell, as such, they form the basis of all living systems. In order to fully understand biological processes, the ability to identify and quantify the proteins in cells is crucial. Identification can be achieved by determining the amino acid sequ ...

Completing the canvas

Advances and challenges for DNA-PAINT super-resolution imaging

Single-molecule localization microscopy (SMLM) is a potent tool to examine biological systems with unprecedented resolution, enabling the investigation of increasingly smaller structures. At the forefront of these developments is DNA-based point accumulation for imaging in nan ...

FRETboard

Semisupervised classification of FRET traces

Förster resonance energy transfer (FRET) is a useful phenomenon in biomolecular investigations, as it can be leveraged for nanoscale measurements. The optical signals produced by such experiments can be analyzed by fitting a statistical model. Several software tools exist to f ...

Single-molecule FRET is a versatile tool to study nucleic acids and proteins at the nanometer scale. However, currently, only a couple of FRET pairs can be reliably measured on a single object, which makes it difficult to apply single-molecule FRET for structural analysis of b ...

Single-molecule protein identification is an unrealized concept with potentially ground-breaking applications in biological research. We propose a method called FRET X (Förster Resonance Energy Transfer via DNA eXchange) fingerprinting, in which the FRET efficiency is read out ...

Stimuli-responsive soft materials enable controlled release of loaded drug molecules and biomolecules. Controlled release of potent chemotherapeutic or immunotherapeutic agents is crucial to reduce unwanted side effects. In an effort to develop controlled release strategies th ...

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule p ...

Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)–carbene catalyst. Encapsulation of the copper(I)–carbene catalyst ...

Super-resolution imaging allows for the visualization of cellular structures on a nanoscale level. DNA-PAINT (DNA point accumulation in nanoscale topology) is a super-resolution method that depends on the binding and unbinding of DNA imager strands. The current DNA-PAINT techn ...

The in-depth, high-sensitivity characterization of the glycome from complex biological samples, such as biofluids and tissues, is of utmost importance in basic biological research and biomarker discovery. Major challenges often arise from the vast structural diversity of glyca ...

Proteomic analyses provide essential information on molecular pathways of cellular systems and the state of a living organism. Mass spectrometry is currently the first choice for proteomic analysis. However, the requirement for a large amount of sample renders a small-scale pr ...