Hv

H.S.J. van der Zant

info

Please Note

193 records found

Nanomechanical resonances of two-dimensional (2D) materials are sensitive probes for condensedmatter physics, offering new insights into magnetic and electronic phase transitions. Despite extensive research, the influence of the spin dynamics near a phase transition on the nonlin ...
Fundamental research on two-dimensional (2D) magnetic systems based on van der Waals materials has been rapidly gaining traction since their recent discovery. With the increase of recent knowledge, it has become clear that such materials have also a strong potential for applicati ...
Particle exchange heat engines are a novel class of cyclic heat engines that are all-electrical, contain no moving parts and can therefore be scaled down to nanometer size. At the center of their operation is the manipulation of a particle flow between a hot and a cold reservoir ...
The unique properties of two-dimensional (2D) materials bring great promise to improve sensor performance and realise novel sensing principles. However, to enable their high-volume production, wafer-scale processes that allow integration with electronic readout circuits need to b ...
We experimentally and theoretically demonstrate that nonlinear spin-wave dynamics can induce an effective resonant interaction between nonresonant magnon modes in a yttrium iron garnet disk. Under strong pumping near the ferromagnetic resonance mode, we observe a spectral splitti ...
A quantitative understanding of the microscopic mechanisms responsible for damping in van der Waals nanomechanical resonators remains elusive. In this work, we investigate van der Waals magnets, where the thermal expansion coefficient exhibits an anomaly at the magnetic phase tra ...
Biotite crystals are phyllosilicate trioctahedral micas with the general chemical formula K(Mg,Fe)3AlSi3O10(OH)2 that form a solid-solution series with iron-poor phlogopite and iron-rich annite endmembers. With a wide band gap energy an ...
Organic radicals are promising candidates for molecular spintronics due to their intrinsic magnetic moment, their low spin-orbit coupling, and their weak hyperfine interactions. Using a mechanically controlled break junction setup at both room and low temperatures (6 K), we analy ...
van der Waals heterostructures (vdWHs) composed of transition-metal dichalcogenides (TMDs) and layered magnetic semiconductors offer great opportunities to manipulate the exciton and valley properties of TMDs. Here, we present magneto-photoluminescence (PL) studies in a WSe2 ...
Graphene has garnered significant interest in optoelectronics due to its unique properties, including broad wavelength absorption and high mobility. However, its weak stability in ambient conditions requires encapsulation for practical applications. In this study, we investigate ...
A promising approach to attain long-distance coherent spin propagation is accessing topological spin-polarized edge states in graphene. Achieving this without external magnetic fields necessitates engineering graphene band structure, obtainable through proximity effects in van de ...
Helical molecules have been proposed as candidates for producing spin-polarized currents, even at room conditions, due to their chiral asymmetry. However, describing their transport mechanism in single molecular junctions is not straightforward. In this work, we show the synthesi ...
The high susceptibility of ultrathin two-dimensional (2D) material resonators to force and temperature makes them ideal systems for sensing applications and exploring thermomechanical coupling. Although the dynamics of these systems at high stress has been thoroughly investigated ...
Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In ...
Multicellular cable bacteria display an exceptional form of biological conduction, channeling electric currents across centimeter distances through a regular network of protein fibers embedded in the cell envelope. The fiber conductivity is among the highest recorded for biomater ...
The addition of a lateral alkyl chain is a well-known strategy to reduce π-stacked ensembles of molecules in solution, with the intention to minimize the interactions between the molecules’ backbones. In this paper, we study whether this concept generalizes to single-molecule jun ...
Heat transport in two dimensions is fundamentally different from that in three dimensions. As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate d ...
Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials ...
Quantum interference plays an important role in charge transport through single-molecule junctions, even at room temperature. Of special interest is the measurement of the destructive quantum interference dip itself. Such measurements are especially demanding when performed in a ...
The recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacter ...