Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical pr
...
Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical primary thermometry, without the need for sensor recalibration. This article gives an overview of the European Partnership in Metrology (EPM) project: Photonic and quantum sensors for practical integrated primary thermometry (PhoQuS-T), which aims to develop sensors based on photonic ring resonators and optomechanical resonators for robust, small-scale, integrated, and wide-range temperature measurement. The different phases of the project will be presented. The development of the integrated optical practical primary thermometer operating from 4 K to 500 K will be reached by a combination of different sensing techniques: with the optomechanical sensor, quantum thermometry below 10 K will provide a quantum reference for the optical noise thermometry (operating in the range 4 K to 300 K), whilst using the high-resolution photonic (ring resonator) sensor the temperature range to be extended from 80 K to 500 K. The important issues of robust fibre-to-chip coupling will be addressed, and application case studies of the developed sensors in ion-trap monitoring and quantum-based pressure standards will be discussed.