GK
G.H. Koenderink
64 records found
1
Intermediate filaments (IFs) are a key component of the cytoskeleton, essential for regulating cell mechanics, maintaining nuclear integrity, organelle positioning, and modulating cell signaling. Current insights into IF function primarily come from studies using long-term pertur
...
The single most common microbe causing cardiovascular infections is Staphylococcus aureus (S. aureus). S. aureus produces coagulase that converts fibrinogen to fibrin, which is incorporated into biofilms. This process aids in adherence to intravascular structures, defense against
...
The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-li
...
The extracellular matrix (ECM) provides structural support to cells, thereby forming a functional tissue. In cancer, the growth of the tumor creates internal mechanical stress, which, together with the remodeling activity of tumor cells and fibroblasts, alters the ECM structure,
...
Water and Collagen
A Mystery Yet to Unfold
Collagen is the most abundant protein in the human body and plays an essential role in determining the mechanical properties of the tissues. Both as a monomeric protein and in fibrous assemblies, collagen interacts with its surrounding molecules, in particular with water. Interes
...
Fibrous networks such as collagen are common in biological systems. Recent theoretical and experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer networks, however, are composites made of elements with different rigidity. For inst
...
Giant unilamellar vesicles (GUVs) are widely used as in vitro model membranes in biophysics and as cell-sized containers in synthetic biology. Despite their ubiquitous use, there is no one-size-fits-all method for their production. Numerous methods have been developed to meet the
...
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays
...
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H
2O/D
2
Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contra
...
The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the rol
...
How cytoskeletal crosstalk makes cells move
Bridging cell-free and cell studies
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and
...
Tissue surface tension influences cell sorting and tissue fusion. Earlier mechanical studies suggest that multicellular spheroids actively reinforce their surface tension with applied force. Here we study this open question through high-throughput microfluidic micropipette aspira
...
Soft materials are usually defined as materials made of mesoscopic entities, often self-organised, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in eve
...
Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, s
...
Cholangiocarcinoma (CCA) is a type of liver cancer with an aggressive phenotype and dismal outcome in patients. The metastasis of CCA cancer cells to distant organs, commonly lung and lymph nodes, drastically reduces overall survival. However, mechanistic insight how CCA invades
...
The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup o
...
Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to
...
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules
...