Circular Image

N. de Jong

259 records found

Objective
The response of ultrasound contrast agents is sensitive to ambient pressure, especially via their scattered subharmonic signal, which makes them a promising candidate for non-invasive pressure measurements in vivo. This work aimed to understand the sensitivity to am ...
Ultrasound contrast agents, comprised of phospholipid-coated microbubbles, can be produced as monodisperse populations using a microfluidic flow-focusing device. However, microbubble coalescence remains a significant challenge. High production temperatures (e.g., 55 °C) can be us ...
Here we propose an ultrasound contrast-based imaging method that enables non-invasive quantitative assessment of ambient pressure changes inside the body (such as blood pressure). We subject the microbubbles in the contrast agent to two frequencies: A low-frequency (57 kHz) signa ...
This article presents a 4096-element ultrasound probe for high volume-rate (HVR) cardiovascular imaging. The probe consists of two application-specific integrated circuits (ASICs), each of which interfaces with a 2048-element monolithically-integrated capacitive micro-machined ul ...
Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an appl ...
Phospholipid-coated microbubbles with a uniform acoustic response are a promising avenue for functional ultrasound sensing. A uniform acoustic response requires both a monodisperse size distribution and uniform viscoelastic shell properties. Monodisperse microbubbles can be produ ...
This article presents a pitch-matched transceiver application-specific integrated circuit (ASIC) for a wearable ultrasound device intended for transfontanelle ultrasonography, which includes element-level 20-V unipolar pulsers with transmit (TX) beamforming, and receive (RX) circ ...
This article presents an application-specific integrated circuit (ASIC) for catheter-based 3-D ultrasound imaging probes. The pitch-matched design implements a comprehensive architecture with high-voltage (HV) transmitters, analog front ends, hybrid beamforming analog-To-digital ...
Objective: Post-operative brain injury in neonates may result from disturbed cerebral perfusion, but accurate peri-operative monitoring is lacking. High-frame-rate (HFR) cerebral ultrasound could visualize and quantify flow in all detectable vessels using spectral Doppler; howeve ...
The accurate determination of the transfer function of ultrasound transducers is important for their design and operational performance. However, conventional methods for quantifying the transfer function, such as hydrophone measurements, radiation force balance, and pulse-echo m ...
Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, s ...
Objective: The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. Methods: Transcutaneous freehand in vivo imaging of two healthy porci ...
Purpose: Intraventricular blood flow dynamics are associated with cardiac function. Accurate, noninvasive, and easy assessments of hemodynamic quantities (such as velocity, vortex, and pressure) could be an important addition to the clinical diagnosis and treatment of heart disea ...
Acute kidney injury (AKI) is frequently seen in patients with hemorrhagic shock due to hypotension, tissue hypoxia, and inflammation despite adequate resuscitation. There is a lack of information concerning the alteration of renal microcirculation and perfusion during shock and r ...
High frame rate 3D intracardiac echography (3D-ICE) might enable full-volumetric flow, tissue, and electro-mechanical wave tracking in the heart, thus supporting complex interventional procedures. Designing ICE transducers is very challenging due to the constraints imposed by the ...
There is an increased desire for miniature ultrasound probes with small apertures to provide volumetric images at high frame rates for in-body applications. Satisfying these increased requirements makes simultaneous achievement of a good lateral resolution a challenge. As micro-b ...
This article presents a low-power and small-area transceiver application-specific integrated circuit (ASIC) for 3-D trans-fontanelle ultrasonography. A novel micro-beamforming receiver architecture that employs current-mode summation and boxcar integration is used to realize dela ...
The blood vessel wall creates a barrier which can impair the transport of drugs from the blood to the underlying tissue. Lipid-coated gas microbubbles (diameter 1-10 μm) oscillate upon ultrasound application which can be used to locally enhance vascular permeability. However, the ...
Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a ...
Ultrasound-based shear wave elastography is a promising technique to non-invasively assess the dynamic stiffness variations of the heart. The technique is based on tracking the propagation of acoustically induced shear waves in the myocardium of which the propagation speed is lin ...