An Ideal-Theoretic Criterion for Localization of an Unknown Number of Sources

Conference Paper (2016)
Author(s)

Matthew Morency (TU Delft - Signal Processing Systems)

Sergiy A. Vorobyov (Aalto University)

G.J.T. Leus (TU Delft - Signal Processing Systems)

Research Group
Signal Processing Systems
Copyright
© 2016 M.W. Morency, Sergiy A. Vorobyov, G.J.T. Leus
DOI related publication
https://doi.org/10.1109/ACSSC.2016.7869627
More Info
expand_more
Publication Year
2016
Language
English
Copyright
© 2016 M.W. Morency, Sergiy A. Vorobyov, G.J.T. Leus
Research Group
Signal Processing Systems
Pages (from-to)
1499-1502
ISBN (electronic)
978-1-5386-3954-2
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Source localization is among the most fundamental problems in statistical signal processing. Methods which rely on the orthogonality of the signal and noise subspaces, such as Pisarenko’s method, MUSIC, and root-MUSIC are some of the most widely used algorithms to solve this problem. As a common feature, these methods require both a-priori knowledge of the number of sources, and an estimate of the noise subspace. Both requirements are complicating factors to the practical implementation of the algorithms, and sources of potentially severe error. In this paper, we propose a new localization criterion based on the algebraic structure of the noise subspace. An algorithm is proposed which adaptively learns the number of sources and estimates their locations. Simulation results show significant improvement over root-MUSIC, even when the correct number of sources is provided to the root-MUSIC algorithm.

Files

Asilomar16.pdf
(pdf | 0.305 Mb)
License info not available