Effect of C and N and their absence on the kinetics of austenite-ferrite phase transformations in Fe-0.5Mn alloy

Journal Article (2018)
Author(s)

H Farahani (TU Delft - Novel Aerospace Materials)

Hatem Zurob (McMaster University)

Christopher R. Hutchinson (Monash University)

Sybrand Van der ZWAAG (TU Delft - Novel Aerospace Materials)

Research Group
Novel Aerospace Materials
Copyright
© 2018 H. Farahani, Hatem Zurob, Christopher R. Hutchinson, S. van der Zwaag
DOI related publication
https://doi.org/10.1016/j.actamat.2018.03.026
More Info
expand_more
Publication Year
2018
Language
English
Copyright
© 2018 H. Farahani, Hatem Zurob, Christopher R. Hutchinson, S. van der Zwaag
Research Group
Novel Aerospace Materials
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Volume number
150
Pages (from-to)
224-235
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Investigating the partitioning effect of substitutional and interstitial elements on the migration of transformation interfaces during austenite-ferrite phase transformation in steels with the conventional experimental method is extremely challenging due to interaction between the solute atoms and the transformation interfaces. Additionally, the simultaneous nucleation of new phases during phase transformations limits the accuracy of extracted growth rates from experimental kinetics measurements of phase fractions. In a novel experimental approach, the cyclic partial phase transformation concept is used to avoid the effect of nucleation on total kinetics of phase transformations. In this study, a Fe-0.5Mn alloy in the presence and absence of interstitial C and N additions is subjected to different cyclic transformation routes to examine the possible interaction between solute atoms and migrating interfaces. The experimental results are in semi-quantitative agreement with modelling predictions made by the local equilibrium approach and provide indirect evidence of Mn partitioning at austenite/ferrite interface in absence of any interstitial elements. It is also confirmed that the presence of interstitial elements promotes Mn interaction with the interface, whereas N promotes more Mn partitioning at transformation interface compared to C.

Files

1_s2.0_S1359645418302118_main.... (pdf)
(pdf | 4.71 Mb)
- Embargo expired in 01-01-2019
License info not available