A Stream-based Resource for Multi-Dimensional Evaluation of Recommender Algorithms

Conference Paper (2017)
Author(s)

Benjamin Kille (Technical University of Berlin)

Andreas Lommatzsch (Technical University of Berlin)

Frank Hopfgartner (University of Glasgow)

M. Larson (TU Delft - Multimedia Computing)

AP De Vries (Radboud Universiteit Nijmegen)

Copyright
© 2017 Benjamin Kille, Andreas Lommatzsch, Frank Hopfgartner, M.A. Larson, A.P. de Vries
DOI related publication
https://doi.org/10.1145/3077136.3080726
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 Benjamin Kille, Andreas Lommatzsch, Frank Hopfgartner, M.A. Larson, A.P. de Vries
Pages (from-to)
1257-1260
ISBN (electronic)
978-1-4503-5022-8
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Recommender System research has evolved to focus on developing algorithms capable of high performance in online systems. This development calls for a new evaluation infrastructure that supports multi-dimensional evaluation of recommender systems. Today’s researchers should analyze algorithms with respect to a variety of aspects including predictive performance and scalability. Researchers need to subject algorithms to realistic conditions in online A/B tests.
We introduce two resources supporting such evaluation methodologies: the new data set of stream recommendation interactions released for CLEF NewsREEL 2017, and the new Open Recommendation Platform (ORP). The data set allows researchers to study a stream recommendation problem closely by “replaying” it locally, and ORP makes it possible to take this evaluation “live” in a living
lab scenario. Specifically, ORP allows researchers to deploy their algorithms in a live stream to carry out A/B tests. To our knowledge, NewsREEL is the first online news recommender system resource to be put at the disposal of the research community. In order to encourage others to develop comparable resources for a wide range of domains, we present a list of practical lessons learned in the
development of the dataset and ORP.