Interaction of non-biodegradable particles and granular sludge in Nereda®—— from nanoparticles to microparticles

Journal Article (2025)
Author(s)

Zhaoxu Peng (Zhengzhou University, TU Delft - Sanitary Engineering)

Antonella L. Piaggio (TU Delft - Sanitary Engineering)

Guilherme Lelis Giglio (Universidade de São Paulo, TU Delft - Sanitary Engineering)

Sara Toja Ortega (TU Delft - Sanitary Engineering)

M. C M van Loosdrecht (TU Delft - BT/Environmental Biotechnology)

Merle De Kreuk (TU Delft - Water Management)

Research Group
Sanitary Engineering
DOI related publication
https://doi.org/10.1016/j.watres.2025.123698
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Sanitary Engineering
Volume number
281
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

>50 % of the organic matter in sewage consist of particulate chemical oxygen demand (pCOD). This study used 250 μm fluorescent microbeads, 130±58 μm microparticles and 100 nm nanobeads to simulate sewage particles, and investigated the fate of these particles under both plug flow feeding and aeration phases in an aerobic granular sludge (AGS) system. Filtration performance was dominantly influenced by the particle size rather than the upflow velocity (Vupflow). The microbeads exhibited 95±3 % filtration efficiency with obvious accumulation around the AGS bed bottom, even as slight fluidization started at the Vupflow of 5.0 m·h-1. In contrast, the nanobeads filtration efficiency was significantly lower (43±6 %). During the aeration phase, the attachment efficiency increased with the decrease of particle size. The microbeads attachment efficiency variated between 39–49 %, whereas the microparticles and nanobeads achieved better attachment of 89.4–95.2 % and 98.8–99.3 %, respectively. Furthermore, aeration batch tests showed both nanobeads and the irregular microparticles attachment by AGS was strong, and the detach-attach of nanobeads/microparticles between different sized AGS was very limited duration aeration. This work provides insight into the fate of particles in AGS system. The optimal sludge treatment was also evaluated in the scope of this removal of non-biodegradable, and potentially harmful particles.