Enabling coastal analytics at planetary scale
F.R. Calkoen (Deltares, TU Delft - Coastal Engineering)
Arjen Luijendijk (Deltares, TU Delft - Coastal Engineering)
Kilian Vos (Water Research Laboratory)
Etiënne Kras (Deltares)
F. Baart (TU Delft - Rivers, Ports, Waterways and Dredging Engineering, Deltares)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing. Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the coastal community to start producing data, tools, and models suitable for scalable coastal analytics.