A Self-supervised Classification Algorithm for Sensor Fault Identification for Robust Structural Health Monitoring
Andreea Maria Oncescu (University of Oxford)
Alice Cicirello (TU Delft - Mechanics and Physics of Structures, TU Delft - Engineering Structures)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
A self-supervised classification algorithm is proposed for detecting and isolating sensor faults of health monitoring devices. This is achieved by automatically extracting information from failure investigations. This approach uses (i) failure reports for extracting comprehensive failure labels; (ii) recorded data of a faulty monitoring device and the information of the failure type for selecting fault-sensitive features. The features-label pairs are then used to train a classification algorithm, so that when a new set of measurements becomes available, the algorithm is capable of identifying with a high accuracy one of the possible failure types included in the training data set. The proposed approach is successfully applied to the failure investigations conducted on a low-cost wearable device, displaying similar challenges encountered in SHM.