Review of scaling effects on physical properties and practicalities of cantilever sensors
C. Yang (TU Delft - BUS/Quantum Delft)
E.W.J.M. van der Drift (TU Delft - Management Support)
Paddy French (TU Delft - Bio-Electronics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Reducing sensor dimension is a good way to increase system sensitivity and response. However the advantages gained must be weighed against other effects which also became significant during the scaling process. In this paper, the scaling effect of cantilever sensors from micrometre to nanometre regimes is reviewed. Changes in the physical properties such as Q-factor, Young's modulus, noise and nonlinear deflections, as well as effects on practical sensor applications such as sensor response and sensor readouts, are presented. Since cantilever is an elemental transducer and device building block, its scaling effects can be further extrapolated to other sensing systems and applications.