HAVANA: Hierarchical stochastic neighbor embedding for Accelerated Video ANnotAtions

Master Thesis (2024)
Author(s)

A. Bobe (TU Delft - Electrical Engineering, Mathematics and Computer Science)

Contributor(s)

J.C. van Gemert – Mentor (TU Delft - Pattern Recognition and Bioinformatics)

Thomas Durieux – Graduation committee member (TU Delft - Software Engineering)

Faculty
Electrical Engineering, Mathematics and Computer Science
More Info
expand_more
Publication Year
2024
Language
English
Graduation Date
10-07-2024
Awarding Institution
Delft University of Technology
Programme
['Computer Science']
Faculty
Electrical Engineering, Mathematics and Computer Science
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Video annotation is a critical and time-consuming task in computer vision research and applications. This paper presents a novel annotation pipeline that uses pre-extracted features and dimensionality reduction to accelerate the temporal video annotation process. Our approach uses Hierarchical Stochastic Neighbor Embedding (HSNE) to create a multi-scale representation of video features, allowing annotators to efficiently explore and label large video datasets. We demonstrate significant improvements in annotation effort compared to traditional linear methods, achieving more than a 10x reduction in clicks required for annotating over 12 hours of video. Our experiments on multiple datasets show the effectiveness and robustness of our pipeline across various scenarios. Moreover, we investigate the optimal configuration of HSNE parameters for different datasets. Our work provides a promising direction for scaling up video annotation efforts in the era of video understanding.

Files

Master_Thesis_ABobe.pdf
(pdf | 12 Mb)
License info not available