Topology optimization of smart structures with embedded piezoelectric stack actuators using a composite geometry projection method
B.V. de Almeida (University of Campinas, TU Delft - Computational Design and Mechanics)
R. Pavanello (University of Campinas)
Matthijs Langelaar (TU Delft - Computational Design and Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The design of smart structures is challenging because of the integrated electromechanical modelling and optimization of actuators, sensors and load-bearing structures. To simplify the design process, it is common to decouple some of the components and physics and develop each part separately, which could lead to suboptimal systems. To improve the overall design of active structures, we propose an integrated and fully coupled design methodology for a certain class of smart structures. Specifically, this paper presents a numerical framework for the simultaneous application of density-based topology optimization of multi-material conductive compliant mechanisms and a composite multi-layered geometry-projection method for the optimization of the size, position and orientation of embedded piezoelectric stack actuators. Their electromechanical properties are represented in a continuum-based setting by an orientation- and geometry-dependent equivalent material model and their activation depends on the distribution of conductive material in the structure. Furthermore, a novel constraint on the polarization of the actuators is proposed to avoid unwanted designs that could cause their mechanical degradation. A set of numerical examples is analysed and discussed. The proposed framework exhibits promising results, with significant improvements in comparison to a benchmark problem.