Experimental study on scour around beveled submerged vanes
Anirban Mandal (Indian Institute of Technology Roorkee)
Zulfequar Ahmad (Indian Institute of Technology Roorkee)
E. Mosselman (TU Delft - Rivers, Ports, Waterways and Dredging Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Submerged vanes are an effective approach to sediment management in river systems. Nowadays, submerged vanes are increasingly utilized in contemporary river engineering due to their convenient and cost-effective installation, which distinguishes them from traditional approaches. However, this structure induces localized scour, which can potentially destabilize and compromise its integrity. The performance and effectiveness of a submerged vane in controlling scour and managing sediment depends on its shape and dimensions. The primary aim of this study is to refine the design of submerged vanes to assess the maximum scour depth in their vicinity and changes in bed morphology downstream of the vane. We carried out 95 experimental runs in clear-water conditions to investigate the influence of vane height, bevel angle, angle of flow attack, and flow regime on the maximum scour depth in the vicinity and downstream of the vane. Results show that the maximum scour depth increases with the increase in the angle of attack, vane height-to-depth ratio, and densimetric Froude number. The depth of scour around the vane and downstream in the channel decreases as the bevel angle increases. We propose empirical equations for calculating the maximum scour depth near the vane and downstream at equilibrium condition. The densimetric Froude number of the flow and the angle of flow attack are found to have the largest influence on maximum scour depth and downstream extension. The findings indicate that the bevel shape is effective method to reduces the maximum scour depth around the vane.