On the Robustness of Bayesian Neural Networks to Adversarial Attacks

Journal Article (2025)
Author(s)

Luca Bortolussi (University of Trieste)

Ginevra Carbone (University of Trieste)

L. Laurenti (TU Delft - Team Luca Laurenti)

Andrea Patanè (Trinity College Dublin)

Guido Sanguinetti (SISSA)

Matthew Wicker (University of Oxford)

Research Group
Team Luca Laurenti
DOI related publication
https://doi.org/10.1109/TNNLS.2024.3386642
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Team Luca Laurenti
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Issue number
4
Volume number
36
Pages (from-to)
6679-6692
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, training deep learning models robust to adversarial attacks is still an open problem. In this article, we analyse the geometry of adversarial attacks in the over-parameterized limit for Bayesian neural networks (BNNs). We show that, in the limit, vulnerability to gradient-based attacks arises as a result of degeneracy in the data distribution, i.e., when the data lie on a lower dimensional submanifold of the ambient space. As a direct consequence, we demonstrate that in this limit, BNN posteriors are robust to gradient-based adversarial attacks. Crucially, by relying on the convergence of infinitely-wide BNNs to Gaussian processes (GPs), we prove that, under certain relatively mild assumptions, the expected gradient of the loss with respect to the BNN posterior distribution is vanishing, even when each NN sampled from the BNN posterior does not have vanishing gradients. The experimental results on the MNIST, Fashion MNIST, and a synthetic dataset with BNNs trained with Hamiltonian Monte Carlo and variational inference support this line of arguments, empirically showing that BNNs can display both high accuracy on clean data and robustness to both gradient-based and gradient-free adversarial attacks.

Files

License info not available
warning

File under embargo until 22-10-2025