Circular Image

L. Laurenti

info

Please Note

40 records found

Partitioning techniques for non-centralized predictive control

A systematic review and novel theoretical insights

The partitioning problem is of central relevance for designing and implementing non-centralized Model Predictive Control (MPC) strategies for large-scale systems. These control approaches include decentralized MPC, distributed MPC, hierarchical MPC, and coalitional MPC. Partition ...
This paper presents a method for the simultaneous synthesis of a barrier certificate and a safe controller for discrete-time nonlinear stochastic systems. Our approach, based on piecewise stochastic control barrier functions, reduces the synthesis problem to a minimax optimizatio ...
Extended defects such as dislocation networks and general grain boundaries are ubiquitous in metals, and accurate modeling these extensive defects is crucial to elucidate their deformation mechanisms. However, existing machine learning interatomic potentials (MLIPs) often fall sh ...
This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian Process (GP) regression and obtaining probabilistic ...
In this study, we explore the mechanisms underlying the exceptional intrinsic strength of face-centered cubic (FCC) Multi-Principal Element Alloys (MPEAs) using a multifaceted approach. Our methods integrate atomistic simulations, informed by both embedded-atom model and neural n ...
Gaussian Process Regression (GPR) is a powerful and elegant method for learning complex functions from noisy data with a wide range of applications, including in safety-critical domains. Such applications have two key features: (i) they require rigorous error quantification, and ...
This paper introduces a novel abstraction-based framework for controller synthesis of nonlinear discrete-time stochastic systems. The focus is on probabilistic reach-avoid specifications. The framework is based on abstracting a stochastic system into a new class of robust Markov ...
The European Economic Area Electricity Network Benchmark (EEA-ENB) is a multi-area power system representing the European network of transmission systems for electricity to facilitate the application of distributed control techniques. In the EEA-ENB, we consider the Load Frequenc ...
Understanding atomic hydrogen (H) diffusion in multi-principal element alloys (MPEAs) is crucial for enhancing hydrogen transport and storage technologies. However, the vast compositional space and complex chemical environments of MPEAs pose significant challenges. We develop hig ...
With the increasing ubiquity of safety-critical autonomous systems operating in uncertain environments, there is a need for mathematical methods for formal verification of stochastic models. Towards formally verifying properties of stochastic systems, methods based on discrete, f ...
Leveraging autonomous systems in safety-critical scenarios requires verifying their behaviors in the presence of uncertainties and black-box components that influence the system dynamics. In this work, we develop a framework for verifying discrete-time dynamical systems with unmo ...
Uncertainty propagation in non-linear dynamical systems has become a key problem in various fields including control theory and machine learning. In this work, we focus on discrete-time non-linear stochastic dynamical systems. We present a novel approach to approximate the distri ...
Multi-principal element alloys (MPEAs) are renowned for their enhanced mechanical strength relative to their constituent metals, as evidenced by various experimental techniques such as tension/compression tests and instrumental indentation. Nevertheless, atomistic simulations som ...
We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are ɛ−close, in the Wasserstein ...
The partitioning problem is a key problem for distributed control techniques. The problem consists in the definition of the subnetworks of a dynamical system that can be considered as individual control agents in the distributed control approach. Despite its relevance and the dif ...
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, training deep learning models robust to adversarial attacks is still an open problem ...
Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The state uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equa ...
We study the problem of certifying the robustness of Bayesian neural networks (BNNs) to adversarial input perturbations. Specifically, we define two notions of robustness for BNNs in an adversarial setting: probabilistic robustness and decision robustness. The former deals with t ...
In this paper, we consider discrete-time nonlinear stochastic dynamical systems with additive process noise in which both the initial state and noise distributions are uncertain. Our goal is to quantify how the uncertainty in these distributions is propagated by the system dynami ...