Circular Image

L. Laurenti

30 records found

This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian Process (GP) regression and obtaining probabilistic ...
We study the problem of certifying the robustness of Bayesian neural networks (BNNs) to adversarial input perturbations. Specifically, we define two notions of robustness for BNNs in an adversarial setting: probabilistic robustness and decision robustness. The former deals with t ...
Uncertainty propagation in non-linear dynamical systems has become a key problem in various fields including control theory and machine learning. In this work, we focus on discrete-time non-linear stochastic dynamical systems. We present a novel approach to approximate the distri ...
In this study, we explore the mechanisms underlying the exceptional intrinsic strength of face-centered cubic (FCC) Multi-Principal Element Alloys (MPEAs) using a multifaceted approach. Our methods integrate atomistic simulations, informed by both embedded-atom model and neural n ...
This paper introduces a novel abstraction-based framework for controller synthesis of nonlinear discrete-time stochastic systems. The focus is on probabilistic reach-avoid specifications. The framework is based on abstracting a stochastic system into a new class of robust Markov ...
The partitioning problem is a key problem for distributed control techniques. The problem consists in the definition of the subnetworks of a dynamical system that can be considered as individual control agents in the distributed control approach. Despite its relevance and the dif ...
Understanding atomic hydrogen (H) diffusion in multi-principal element alloys (MPEAs) is crucial for enhancing hydrogen transport and storage technologies. However, the vast compositional space and complex chemical environments of MPEAs pose significant challenges. We develop hig ...
We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are ɛ−close, in the Wasserstein ...
Gaussian Process Regression (GPR) is a powerful and elegant method for learning complex functions from noisy data with a wide range of applications, including in safety-critical domains. Such applications have two key features: (i) they require rigorous error quantification, and ...
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, training deep learning models robust to adversarial attacks is still an open problem ...
Extended defects such as dislocation networks and general grain boundaries are ubiquitous in metals, and accurate modeling these extensive defects is crucial to elucidate their deformation mechanisms. However, existing machine learning interatomic potentials (MLIPs) often fall sh ...
Accurate fatigue assessment of material plagued by defects is of utmost importance to guarantee safety and service continuity in engineering components. This study shows how state-of-the-art semi-empirical models can be endowed with additional defect descriptors to probabilistica ...
Model-based reinforcement learning seeks to simultaneously learn the dynamics of an unknown stochastic environment and synthesise an optimal policy for acting in it. Ensuring the safety and robustness of sequential decisions made through a policy in such an environment is a key c ...

IntervalMDP.jl

Accelerated Value Iteration for Interval Markov Decision Processes

In this paper, we present IntervalMDP.jl, a Julia package for probabilistic analysis of interval Markov Decision Processes (IMDPs). IntervalMDP.jl facilitates the synthesis of optimal strategies and verification of IMDPs against reachability specifications and discounted reward p ...
Analyzing event-triggered control's (ETC) sampling behavior is of paramount importance, as it enables formal assessment of its sampling performance and prediction of its sampling patterns. In this work, we formally analyze the sampling behavior of stochastic linear periodic ETC ( ...
Interval Markov Decision Processes (IMDPs) are finite-state uncertain Markov models, where the transition probabilities belong to intervals. Recently, there has been a surge of research on employing IMDPs as abstractions of stochastic systems for control synthesis. However, due t ...
Deep Kernel Learning (DKL) combines the representational power of neural networks with the uncertainty quantification of Gaussian Processes. Hence, it is potentially a promising tool to learn and control complex dynamical systems. In this letter, we develop a scalable abstraction ...
We present a novel framework for formal control of uncertain discrete-time switched stochastic systems against probabilistic reach-avoid specifications. In particular, we consider stochastic systems with additive noise, whose distribution lies in an ambiguity set of distributions ...
In this paper, we introduce BNN-DP, an efficient algorithmic framework for analysis of adversarial robustness of Bayesian Neural Networks (BNNs). Given a compact set of input points T ⊂ Rn, BNN-DP computes lower and upper bounds on the BNN's predictions for all the poi ...
This paper proposes a new framework to compute finite-horizon safety guarantees for discrete-time piece-wise affine systems with stochastic noise of unknown distributions. The approach is based on a novel approach to synthesise a stochastic barrier function (SBF) from noisy data ...