Formal Verification of Unknown Dynamical Systems Via Gaussian Process Regression

Journal Article (2025)
Author(s)

John Skovbekk (University of Colorado Boulder)

L. Laurenti (TU Delft - Team Luca Laurenti)

Eric Frew (University of Colorado Boulder)

Morteza Lahijanian (University of Colorado Boulder)

Research Group
Team Luca Laurenti
DOI related publication
https://doi.org/10.1109/TAC.2025.3532812
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Team Luca Laurenti
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/publishing/publisher-deals Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Issue number
8
Volume number
70
Pages (from-to)
4960-4975
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Leveraging autonomous systems in safety-critical scenarios requires verifying their behaviors in the presence of uncertainties and black-box components that influence the system dynamics. In this work, we develop a framework for verifying discrete-time dynamical systems with unmodelled dynamics and noisy measurements against temporal logic specifications from an input-output dataset. The verification framework employs Gaussian process (GP) regression to learn the unknown dynamics from the dataset and abstracts the continuous-space system as a finite-state, uncertain Markov decision process (MDP). This abstraction relies on space discretization and transition probability intervals that capture the uncertainty due to the error in GP regression by using reproducible kernel Hilbert space analysis as well as the uncertainty induced by discretization. The framework utilizes existing model checking tools for verification of the uncertain MDP abstraction against a given temporal logic specification. We establish the correctness of extending the verification results on the abstraction created from noisy measurements to the underlying system. We show that the computational complexity of the framework is polynomial in the size of the dataset and discrete abstraction. The complexity analysis illustrates a trade-off between the quality of the verification results and the computational burden to handle larger datasets and finer abstractions. Finally, we demonstrate the efficacy of our learning and verification framework on several case studies with linear, nonlinear, and switched dynamical systems.

Files

Formal_Verification_of_Unknown... (pdf)
(pdf | 4.82 Mb)
- Embargo expired in 22-07-2025
License info not available