ML

Morteza Lahijanian

15 records found

This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian Process (GP) regression and obtaining probabilistic ...
We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are ɛ−close, in the Wasserstein ...
Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The state uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equa ...
Leveraging autonomous systems in safety-critical scenarios requires verifying their behaviors in the presence of uncertainties and black-box components that influence the system dynamics. In this work, we develop a framework for verifying discrete-time dynamical systems with unmo ...
Uncertainty propagation in non-linear dynamical systems has become a key problem in various fields including control theory and machine learning. In this work, we focus on discrete-time non-linear stochastic dynamical systems. We present a novel approach to approximate the distri ...
Gaussian Process Regression (GPR) is a powerful and elegant method for learning complex functions from noisy data with a wide range of applications, including in safety-critical domains. Such applications have two key features: (i) they require rigorous error quantification, and ...

IntervalMDP.jl

Accelerated Value Iteration for Interval Markov Decision Processes

In this paper, we present IntervalMDP.jl, a Julia package for probabilistic analysis of interval Markov Decision Processes (IMDPs). IntervalMDP.jl facilitates the synthesis of optimal strategies and verification of IMDPs against reachability specifications and discounted reward p ...
Deep Kernel Learning (DKL) combines the representational power of neural networks with the uncertainty quantification of Gaussian Processes. Hence, it is potentially a promising tool to learn and control complex dynamical systems. In this letter, we develop a scalable abstraction ...
Verifying the performance of safety-critical, stochastic systems with complex noise distributions is difficult. We introduce a general procedure for the finite abstraction of nonlinear stochastic systems with nonstandard (e.g., non-affine, non-symmetric, non-unimodal) noise distr ...
In this paper, we introduce BNN-DP, an efficient algorithmic framework for analysis of adversarial robustness of Bayesian Neural Networks (BNNs). Given a compact set of input points T ⊂ Rn, BNN-DP computes lower and upper bounds on the BNN's predictions for all the poi ...
Interval Markov Decision Processes (IMDPs) are finite-state uncertain Markov models, where the transition probabilities belong to intervals. Recently, there has been a surge of research on employing IMDPs as abstractions of stochastic systems for control synthesis. However, due t ...
Neural Networks (NNs) have been successfully employed to represent the state evolution of complex dynamical systems. Such models, referred to as NN dynamic models (NNDMs), use iterative noisy predictions of NN to estimate a distribution of system trajectories over time. Despite t ...
Neural networks (NNs) are emerging as powerful tools to represent the dynamics of control systems with complicated physics or black-box components. Due to complexity of NNs, however, existing methods are unable to synthesize complex behaviors with guarantees for NN dynamic models ...
Autonomous systems often have complex and possibly unknown dynamics due to, e.g., black-box components. This leads to unpredictable behaviors and makes control design with performance guarantees a major challenge. This paper presents a data-driven control synthesis framework for ...
We present a data-driven framework for strategy synthesis for partially-known switched stochastic systems. The properties of the system are specified using linear temporal logic (LTL) over finite traces (LTLf), which is as expressive as LTL and enables interpretations over finite ...