ConvSequential-SLAM
A Sequence-Based, Training-Less Visual Place Recognition Technique for Changing Environments
Mihnea Alexandru Tomita (University of Essex)
M. Zaffar (TU Delft - Intelligent Vehicles)
Michael Milford (Queensland University of Technology)
Klaus D. McDonald-Maier (University of Essex)
Shoaib Ehsan (University of Essex)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place under changing viewpoints and appearances. A large number of handcrafted and deep-learning-based VPR techniques exist, where the former suffer from appearance changes and the latter have significant computational needs. In this paper, we present a new handcrafted VPR technique, namely ConvSequential-SLAM, that achieves state-of-the-art place matching performance under challenging conditions. We utilise sequential information and block-normalisation to handle appearance changes, while using regional-convolutional matching to achieve viewpoint-invariance. We analyse content-overlap in-between query frames to find a minimum sequence length, while also re-using the image entropy information for environment-based sequence length tuning. State-of-the-art performance is reported in contrast to 9 contemporary VPR techniques on 4 public datasets. Qualitative insights and an ablation study on sequence length are also provided.