Power management technologies for triboelectric nanogenerators
Sijun Du (TU Delft - Electronic Instrumentation)
Philippe Basset (Université Gustave Eiffel/ESIEE Paris)
Hengyu Guo (Chongqing University)
Dimitri Galayko (Sorbonne Unibversité)
Armine Karami (Centre National de la Recherche Scientifque)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
A triboelectric nanogenerator (TENG) is a novel device that utilizes contact electrification and electrostatic induction to convert mechanical energy into electrical energy. Its characteristics include high energy density and flexibility, enabling self-powering of electronic devices by harvesting mechanical energy from the environment. Its applications include biomedical devices, wearable electronics, and Internet-of-Things (IoT) sensors. Despite these advantages, extracting electrical energy from TENG remains challenging due to its time-varying nature and low internal capacitance. Effective power-management techniques are essential for TENG energy-harvesting systems, yet research on dedicated integrated power-conversion methods is currently limited. Given the growing interest in TENG, a comprehensive exploration of energy-harvesting systems is critically necessary. This article synthesizes and compares current advancements in triboelectric energy-harvesting systems, emphasizing strategies to enhance output power through various power-conversion techniques. Additionally, it explores techniques employed in other energy-harvesting systems to inspire innovative approaches in TENG system design.