Multi-Task Sensor Resource Balancing Using Lagrangian Relaxation and Policy Rollout
M.I. Schöpe (TU Delft - Microwave Sensing, Signals & Systems)
H. Driessen (TU Delft - Microwave Sensing, Signals & Systems)
A.G. Yarovyi (TU Delft - Microwave Sensing, Signals & Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The sensor resource management problem in a multi-object tracking scenario is considered. In order to solve it, a dynamic budget balancing algorithm is proposed which models the different sensor tasks as partially observable Markov decision processes. Those are being solved by applying a combination of Lagrangian relaxation and policy rollout. The algorithm converges to a solution which is close to the optimal steady-state solution. This is shown through simulations of a two-dimensional tracking scenario. Moreover, it is demonstrated how the algorithm allocates the sensor time budgets dynamically to a changing environment and takes predictions of the future situation into account.