Reducing the error rate of a superconducting logical qubit using analog readout information
Hany Ali (Kavli institute of nanoscience Delft, TU Delft - QCD/DiCarlo Lab, TU Delft - QuTech Advanced Research Centre)
Jorge Marques (Kavli institute of nanoscience Delft, TU Delft - QCD/DiCarlo Lab, TU Delft - QuTech Advanced Research Centre)
Ophelia Crawford (Riverlane Ltd)
Joonas Majaniemi (Riverlane Ltd)
Marc Serra-Peralta (TU Delft - QCD/Terhal Group, TU Delft - QuTech Advanced Research Centre)
David Byfield (Riverlane Ltd)
Boris Varbanov (TU Delft - QCD/Terhal Group, TU Delft - QuTech Advanced Research Centre)
Barbara M. Terhal (TU Delft - Discrete Mathematics and Optimization, TU Delft - QuTech Advanced Research Centre)
Leonardo Dicarlo (TU Delft - QuTech Advanced Research Centre, TU Delft - QN/DiCarlo Lab, Kavli institute of nanoscience Delft, TU Delft - QCD/DiCarlo Lab)
Earl T. Campbell (Riverlane Ltd, University of Sheffield)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Quantum error correction enables the preservation of logical qubits with a lower logical error rate than the physical error rate, with performance depending on the decoding method. Traditional decoding approaches rely on the binarization ("hardening") of readout data, thereby ignoring valuable information embedded in the analog ("soft") readout signal. We present experimental results showcasing the advantages of incorporating soft information into the decoding process of a distance-3 (d=3) bit-flip surface code with flux-tunable transmons.