Combining deep learning and 3D contrast source inversion in MR-based electrical properties tomography

Journal Article (2019)
Author(s)

Reijer Leijsen (Leiden University Medical Center)

C.A.T. van den Berg (University Medical Center Utrecht, Universiteit Utrecht)

A.G. Webb (Leiden University Medical Center)

Rob F. Remis (TU Delft - Signal Processing Systems)

Stefano Mandija (Universiteit Utrecht, University Medical Center Utrecht)

Research Group
Signal Processing Systems
Copyright
© 2019 R.L. Leijsen, Cornelis van den Berg, A. Webb, R.F. Remis, Stefano Mandija
DOI related publication
https://doi.org/10.1002/nbm.4211
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 R.L. Leijsen, Cornelis van den Berg, A. Webb, R.F. Remis, Stefano Mandija
Research Group
Signal Processing Systems
Issue number
4
Volume number
35
Pages (from-to)
1-7
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Magnetic resonance electrical properties tomography (MR-EPT) is a technique used to estimate the conductivity and permittivity of tissues from MR measurements of the transmit magnetic field. Different reconstruction methods are available; however, all these methods present several limitations, which hamper the clinical applicability. Standard Helmholtz-based MR-EPT methods are severely affected by noise. Iterative reconstruction methods such as contrast source inversion electrical properties tomography (CSI-EPT) are typically time-consuming and are dependent on their initialization. Deep learning (DL) based methods require a large amount of training data before sufficient generalization can be achieved. Here, we investigate the benefits achievable using a hybrid approach, that is, using MR-EPT or DL-EPT as initialization guesses for standard 3D CSI-EPT. Using realistic electromagnetic simulations at 3 and 7 T, the accuracy and precision of hybrid CSI reconstructions are compared with those of standard 3D CSI-EPT reconstructions. Our results indicate that a hybrid method consisting of an initial DL-EPT reconstruction followed by a 3D CSI-EPT reconstruction would be beneficial. DL-EPT combined with standard 3D CSI-EPT exploits the power of data-driven DL-based EPT reconstructions, while the subsequent CSI-EPT facilitates a better generalization by providing data consistency.