A 440-μW, 109.8-dB DR, 106.5-dB SNDR Discrete-Time Zoom ADC With a 20-kHz BW
E.N. Eland (TU Delft - Electronic Instrumentation)
Shoubhik Karmakar (TU Delft - Electronic Instrumentation)
B. Gonen (Ethernovia)
R. van Veldhoven (NXP Semiconductors)
K. A.A. Makinwa (TU Delft - Microelectronics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This article describes a discrete-time zoom analog-to-digital converter (ADC) intended for audio applications. It uses a coarse 5-bit SAR ADC in tandem with a fine third-order delta-sigma modulator (ΔΣM) to efficiently obtain a high dynamic range. To minimize its over-sampling ratio (OSR) and, thus, its digital power consumption, the modulator employs a 2-bit quantizer and a loop filter notch. In addition, an extra feed-forward path minimizes the leakage of the SAR ADC's quantization noise into the audio band. The prototype ADC occupies 0.27 mm2 in a 0.16-μm technology. It achieves 109.8-dB DR, 106.5-dB SNDR, and 107.5-dB SNR in a 20-kHz bandwidth while dissipating 440 μW. It also achieves state-of-the-art energy efficiency, as demonstrated by a Schreier FoM of 186.4 dB and an SNDR FoM of 183.6 dB.