KM
K.A.A. Makinwa
373 records found
1
...
This article describes the design and implementation of a compact CMOS RC frequency reference based on N-type diffusion (N-diff) resistors and metal-insulator-metal (MIM) capacitors. It consists of a frequency-locked loop (FLL) that locks the period of a voltage-controlled oscill
...
Compute-in-memory (CIM) accelerators for spiking neural networks (SNNs) are promising solutions to enable μs-level inference latency and ultra-low energy in edge vision applications. Yet, their current lack of flexibility at both the circuit and system levels prevents their deplo
...
This article presents a compact sub-1-V bipolar junction transistor (BJT)-based temperature sensor for thermal management applications. To operate from a sub-1-V supply, two capacitors are first pre-charged to a supply-independent initial voltage (> 1 V) by regulated charge pu
...
A single-stage dual-output regulating voltage doubler (DOVD) is proposed for biomedical wireless power transfer (WPT) systems. Derived from the full-wave voltage doubler (VD) topology, it achieves ac-to-dc rectification and dual-output voltage regulation in a single stage by usin
...
This article presents a 14-bit fully dynamic sensor interface that consists of a switched-capacitor (SC) ΔΣ modulator and a dynamic bandgap reference (BGR). The BGR is implemented by summing the proportional to absolute temperature (PTAT) and complementary to absolute temperature
...
This article describes a PNP-based temperature sensor that achieves both high energy efficiency and accuracy. Two resistors convert the CTAT and PTAT voltages generated by a PNP-based front-end into two currents whose ratio is then digitized by a continuous-time (CT) Δ Σ -modulat
...
This paper presents a direct conversion transceiver intended for use in a microfluidic NMR flowmeter. It consists of an H-bridge power amplifier, which drives a hand-wound milimeter-sized coil with RF signals, and a direct conversion receiver, which amplifies the NMR signals pick
...
Advances in CMOS technologies and circuit techniques have led to the development of continuous-time delta-sigma modulators (CTΔ Σ Ms) that sample at gigahertz (GHz) frequencies and achieve high linearity [-100 dBc and >120 dBFS spurious-free dynamic ranges (SFDRs)] in wide ban
...
This article presents a CMOS temperature sensor that achieves both state-of-the-art energy efficiency and accuracy. An NPN-based front end uses two resistors to efficiently generate a PTAT and CTAT current, whose ratio is then digitized by a continuous-time (CT) Δ Σ -modulator. A
...
This brief presents a capacitively-biased CMOS voltage reference, which can operate from a sub-1V supply while achieving a low temperature coefficient (TC) and a competitive power-supply rejection ratio (PSRR). The reference voltage is generated by a capacitive bias circuit that
...
Bias-flip rectifiers are commonly employed for piezoelectric energy harvesting (PEH). This article proposes a synchronized switch harvesting on an inductor (SSHI) rectifier with a duty-cycle-based (DCB) maximum power point tracking (MPPT) algorithm. The proposed DCB MPPT algorith
...
This paper presents a nano-power high-side shunt-based current sensor (CS) that digitizes the voltage drop across an on-chip (±1A) or a lead-frame (±30A) shunt. A TC-tunable ADC reference compensates for the shunts' large temperature coefficient (TC), resulting in ±0.5% gain erro
...
This article presents a sub-1 V bipolar junction transistor (BJT)-based
temperature sensor that achieves both high accuracy and high energy
efficiency. To avoid the extra headroom required by conventional current
sources, the sensor’s diode-connected BJTs are biased by prechar
...
This article presents a digital-input class-D amplifier (CDA) achieving high dynamic range (DR) by employing a chopped capacitive feedback network and a capacitive digital-to-analog converter (DAC). Compared with conventional resistive-feedback CDAs driven by resistive or current
...
BJT-based temperature sensors are widely used due to their high accuracy over a wide temperature range with a low-cost 1-point trim. Although resistor-based sensors can achieve better energy efficiency, they typically require a 2-point trim to achieve comparable accuracy, while t
...
Quantifying Biomedical Amplifier Efficiency
The noise efficiency factor
There has been a long-standing interest in controlling and instrumenting the human body. Whether to restore lost function with neural prosthetics, monitor blood glucose levels, or augment human capabilities, there are countless opportunities for sensors inside ( e.g., ingestible,
...
Class-D amplifiers (CDAs) are widely used in audio applications where a high power efficiency is required. As most audio sources are digital nowadays, implementing digital-input CDAs results in higher levels of integration and lower cost. However, prior open-loop digital-input CD
...
The Zoom ADC
An Evolving Architecture
Zoom ADCs combine a coarse SAR ADC with a fine delta-sigma modulator (?SM) to efficiently obtain high energy efficiency and high dynamic range. This makes them well suited for use in various instrumentation and audio applications. However, zoom ADCs also have drawbacks. The use o
...
In chopper amplifiers, the interaction between the input signal and the chopper clock can cause intermodulation distortion (IMD). This is mainly due to finite amplifier bandwidth, which causes signal-dependent output spikes at the chopping transitions. Such chopper-induced IMD ca
...