TS

T. Someya

6 records found

This article describes a PNP-based temperature sensor that achieves both high energy efficiency and accuracy. Two resistors convert the CTAT and PTAT voltages generated by a PNP-based front-end into two currents whose ratio is then digitized by a continuous-time (CT) <inline-f ...
BJT-based temperature sensors are widely used due to their high accuracy over a wide temperature range with a low-cost 1-point trim. Although resistor-based sensors can achieve better energy efficiency, they typically require a 2-point trim to achieve comparable accuracy, while t ...
This paper presents a 210nW BJT-based temperature sensor that achieves an inaccuracy of ±0.15°C (3s) from -15°C to 85°C. A dual-mode front-end (FE), which combines a bias circuit and a BJT core, halves the power needed to generate well-defined CTAT (VBE) and PTAT (?VBE) voltages. ...
This letter describes an NPN-based temperature sensor that achieves a 1-point trimmed inaccuracy of ±0.15 °C (3σ) from -15 to 85 °C while dissipating only 210 nW. It uses a dual-mode frontend to roughly halve the power consumption of conventional frontends. First, two NPNs are us ...
In this paper, a fully-synthesizable digital-to-time (DTC)-based fractional-N multiplying delay-locked loop,(MDLL) is presented. Noise and linearity of synthesizable DTCs are analyzed, and a two-stage synthesizable DTC is proposed in which a path-selection DTC is used as the coar ...
A 6.4 nW 1.7% relative inaccuracy (R-IA) CMOS sub-thermal drain voltage-based temperature sensor is proposed. The proposed stabilized sub-thermal drain voltage current generator achieves a highly linear PTAT output without nonlinearity fitting or post-fabrication trimming and inc ...