A Kernel-Based Identification Approach to LPV Feedforward

With Application to Motion Systems

Journal Article (2023)
Author(s)

M. van Haren (Eindhoven University of Technology)

Lennart Blanken (Sioux, Eindhoven University of Technology)

Tom Oomen (Eindhoven University of Technology, TU Delft - Team Jan-Willem van Wingerden)

Research Group
Team Jan-Willem van Wingerden
DOI related publication
https://doi.org/10.1016/j.ifacol.2023.10.662
More Info
expand_more
Publication Year
2023
Language
English
Research Group
Team Jan-Willem van Wingerden
Issue number
2
Volume number
56
Pages (from-to)
6063-6068
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The increasing demands for motion control result in a situation where Linear Parameter-Varying (LPV) dynamics have to be taken into account. Inverse-model feedforward control for LPV motion systems is challenging, since the inverse of an LPV system is often dynamically dependent on the scheduling sequence. The aim of this paper is to develop an identification approach that directly identifies dynamically scheduled feedforward controllers for LPV motion systems from data. In this paper, the feedforward controller is parameterized in basis functions, similar to, e.g., mass-acceleration feedforward, and is identified by a kernel-based approach such that the parameter dependency for LPV motion systems is addressed. The resulting feedforward includes dynamic dependence and is learned accurately. The developed framework is validated on an example.