An axisymmetric non-hydrostatic model for double-diffusive water systems
KP Hilgersom (TU Delft - Water Resources)
Marcel Zijlema (TU Delft - Environmental Fluid Mechanics)
N. C. Giesen (TU Delft - Water Resources)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In systems that approach axisymmetry around a central location, computation times can be reduced by applying a quasi 3-D axisymmetric model setup. This article applies the Navier-Stokes equations described in cylindrical coordinates, and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite volume model can be easily extended to this quasi 3-D framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature and salinity dependent densities, molecular diffusivities, and kinematic viscosity. Four qualitative case studies demonstrate a good behaviour with respect to expected density and diffusivity driven flow and stratification in shallow water bodies. A fifth case study involves a new validation method that quantifies the radial expansion of a dense water layer developing from a central inflow at the bottom of a shallow water body.