Molecular dynamics simulations of phase transformations in niti bicrystals
Prashanth Srinivasan (TU Delft - Applied Mechanics)
Lucia Nicola (TU Delft - (OLD) MSE-7)
A. Simone (TU Delft - Applied Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The influence of grain boundaries and grain misorientation on the nucleation and growth of martensite in an equi-atomic nickeltitanium (NiTi) shape memory alloy (SMA) is investigated by performing molecular dynamics (MD) simulations on bicrystals with a modified embedded atom method (MEAM) interatomic potential. Stress-induced martensitic transformations are simulated in bicrystals with mixed grain boundaries and the behavior of the bicrystal is compared to that of individual single crystals. Here, a particular bicrystal with < 110 > and < 111 > oriented austenite grains is chosen as an example. Results indicate that the mixed grain boundary in the austenite bicrystal acts as a nucleation site for stress-induced martensitic transformation in the grains. The deformation behavior and the transformation strain of the bicrystal fall in between those of the two corresponding single crystals.