LN

Lucia Nicola

61 records found

Authored

The effect of the presence of a passivation layer on a metal rough surface during contact loading is investigated by means of dislocation dynamics simulations. The metal body is modeled as an FCC single crystal with a self-affine rough surface that is either bare, or covered b ...

Viscoelasticity and roughness are among the possible causes of the adhesive hysteresis displayed by soft contacts. Viscoelasticity causes an increased effective work of adhesion due to stiffening of the contact, while roughness is responsible for elastic instabilities. Herein, ...

A seamless 2D dual-scale computational scheme is developed to study contact problems. The model consists of an atomistic domain close to the contact, coupled with an elastic continuum domain away from the contact. The atomistic formulation provides a description of the contact ...

Discrete dislocation plasticity is a modeling technique that treats plasticity as the collective motion of dislocations. The dislocations are described through their elastic Volterra fields, outside of a cylindrical core region, with a few Burgers vectors of diameter. The cont ...

It is well established that, at small loads, a linear relation exists between contact area and reduced pressure for elastic bodies with non-adhesive rough surfaces. In the case of adhesive contacts, however, there is not yet a general consensus on whether or not linearity stil ...

Although indentation of elastic bodies by self-affine rough indenters has been studied extensively, little attention has so far been devoted to plasticity. This is mostly because modeling plasticity as well as contact with a self-affine rough surface is computationally quite chal ...

Plastic contact of self-affine surfaces

Persson's theory versus discrete dislocation plasticity

Persson's theory allows for a fast and effective estimate of contact area and contact stress distributions when a flat and a self-affine rough surface are pressed into contact. For elastic bodies, the results of the theory have been shown to be in very good agreement with rath ...

During plastic deformation, metal surfaces roughen and this has a deleterious impact on their tribological performance. It is therefore desirable to be able to predict and control the amount of roughening caused by subsurface plasticity. As a first step, we focus on modelling pla ...
The contact mechanical response of various polymers is controlled by the viscoelastic behavior of their bulk and the adhesive properties of their interface. Due to the interplay between viscoelasticity and adhesion it is difficult to predict the contact response, even more when s ...

Pseudoelasticity in NiTi shape memory alloy single crystals depends on the loading direction. Here, we present a comprehensive study in which molecular dynamics simulations of austenitic bulk single crystals under strain-controlled tensile and compressive loading along the 〈11 ...

This review summarizes recent advances in the area of tribology based on the outcome of a Lorentz Center workshop surveying various physical, chemical and mechanical phenomena across scales. Among the main themes discussed were those of rough surface representations, the break ...

The relative contact area of rough surface contacts is known to increase linearly with reduced pressure, with proportionality factor κ. In its common definition, the reduced pressure contains the root-mean-square gradient (RMSG) of the surface. Although easy to measure, the RM ...

Static friction of sinusoidal surfaces

A discrete dislocation plasticity analysis

Discrete dislocation plasticity simulations are carried out to investigate the static frictional response of sinusoidal asperities with (sub)-microscale wavelength. The surfaces are first flattened and then sheared by a perfectly adhesive platen. Both bodies are explicitly modell ...

Green's function molecular dynamics

Including finite heights, shear, and body fields

The Green's function molecular dynamics (GFMD) method for the simulation of incompressible solids under normal loading is extended in several ways: shear is added to the GFMD continuum formulation and Poisson numbers as well as the heights of the deformed body can now be chose ...

Modeling pseudo-elasticity in NiTi

Why the MEAM potential outperforms the EAM-FS potential

A comparison of the EAM-Finnis-Sinclair and the MEAM potential, two of the recently developed potentials to model NiTi, is carried out. The potentials are compared by studying the pseudo-elastic behavior in bulk NiTi for one specific crystallographic orientation. To this end w ...

Metals deform plastically at the asperity level when brought in contact with a counter body even when the nominal contact pressure is small. Modeling the plasticity of solids with rough surfaces is challenging due to the multi-scale nature of surface roughness and the length-scal ...

Contact between two plastically deformable crystals

A discrete dislocation dynamics study

It is customary to simplify the analysis of contact between two elastically deformable bodies by treating an equivalent problem where only one body is deformable and the other is rigid. This is possible provided that the gap geometry and the effective elastic modulus of the bodie ...

Contributed

Discrete Dislocation Dynamics concerns the analysis of microplasticity in which the dislocations, a line defect in the crystallographic periodicity, are treated as separate moving entities inside an elastic continuum. This analysis at the mesoscale can give valuable insights in t ...
Various contact mechanics theories have been developed in recent years. The most popular are the statistical asperity theories of the type of Greenwood and Williamson and Persson’s theory, which treats self affine rough surfaces. The latter theory includes roughness at all length ...