Instabilities and cavitation in cylindrical wavy line contact
A Maugis analysis
J.S. Dokkum (TU Delft - Team Erik Offerman, ETH Zürich)
Francisco Pérez-Ràfols (Universitat Politecnica de Catalunya)
L Nicola (Università degli Studi di Padova)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The Maugis analysis is applied to adhesive contact between a cylinder with various wave profiles and a semi-infinite, elastic half-plane. We extend the analysis of Waters, Lee and Guduru, who consider the adhesive contact of a Hertzian indenter on a semi-infinite, elastic half-space with axi-symmetric, wave profiles. This work gives the closed-form contact mechanical solution for continuous, line contact without the need for any approximation. The resulting semi-analytical model serves to complement existing (numerical) models of adhesive line contact with the static load-area response as a reference. Herewith we analyse adhesion-induced loading-unloading hysteresis and contrast semi-analytical and numerical result to assess the limit of the former analysis. We confirm that roughness-induced dissipation vanishes with increasing wave roughness and decreasing Maugis parameter due to an increase in the range of adhesion and cavitation. Instability and cavitation are mutually exclusive at a given load-area locus yet occur successively in the same contact. An interesting result is that the Johnson parameter, that is known to govern the amplification of adhesion in the JKR-limit, bounds the load-area envelope irrespective of Maugis parameter. However, the Johnson parameter does not control the occurrence of roughness-induced dissipation and thus interface toughening.