Reconstructing Phylogenetic Level-1 Networks from Nondense Binet and Trinet Sets
Katharina T. Huber (University of East Anglia)
L.J.J. van Iersel (TU Delft - Discrete Mathematics and Optimization)
V.L. Moulton (University of East Anglia)
Celine Scornavacca (Université de Montpellier)
Taoyang Wu (University of East Anglia)
More Info
expand_more
Abstract
Binets and trinets are phylogenetic networks with two and three leaves, respectively. Here we consider the problem of deciding if there exists a binary level-1 phylogenetic network displaying a given set TT of binary binets or trinets over a taxon set X, and constructing such a network whenever it exists. We show that this is NP-hard for trinets but polynomial-time solvable for binets. Moreover, we show that the problem is still polynomial-time solvable for inputs consisting of binets and trinets as long as the cycles in the trinets have size three. Finally, we present an O(3|X|poly(|X|))O(3|X|poly(|X|)) time algorithm for general sets of binets and trinets. The latter two algorithms generalise to instances containing level-1 networks with arbitrarily many leaves, and thus provide some of the first supernetwork algorithms for computing networks from a set of rooted phylogenetic networks.
No files available
Metadata only record. There are no files for this record.