Lv

L.J.J. van Iersel

81 records found

Phylogenetic networks are useful in representing the evolutionary history of taxa. In certain scenarios, one requires a way to compare different networks. In practice, this can be rather difficult, except within specific classes of networks. In this paper, we derive metrics for t ...
Reticulate evolution can be modelled using phylogenetic networks. Tree-based networks, which are one of the more general classes of phylogenetic networks, have recently gained eminence for its ability to represent evolutionary histories with an underlying tree structure. To bette ...
With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately rep ...
Phylogenetic networks are graphs that are used to represent evolutionary relationships between different taxa. They generalize phylogenetic trees since for example, unlike trees, they permit lineages to combine. Recently, there has been rising interest in semi-directed phylogenet ...
Semi-directed networks are partially directed graphs that model evolution where the directed edges represent reticulate evolutionary events. We present an algorithm that reconstructs binary n-leaf semi-directed level-1 networks in O(n 2) time from its qua ...
In evolutionary biology, networks are becoming increasingly used to represent evolutionary histories for species that have undergone non-treelike or reticulate evolution. Such networks are essentially directed acyclic graphs with a leaf set that corresponds to a collection of spe ...
Network Phylogenetic Diversity (Network-PD) is a measure for the diversity of a set of species based on a rooted phylogenetic network (with branch lengths and inheritance probabilities on the reticulation edges) describing the evolution of those species. We consider the Max-Netwo ...
Maximum agreement forests have been used as a measure of dissimilarity of two or more phylogenetic trees on a given set of taxa. An agreement forest is a set of trees that can be obtained from each of the input trees by deleting edges and suppressing degree-2 vertices. A maximum ...
Phylogenetic diversity plays an important role in biodiversity, conservation, and evolutionary studies by measuring the diversity of a set of taxa based on their phylogenetic relationships. In phylogenetic trees, a subset of k taxa with maximum phylogenetic diversity can be found ...
The inference of phylogenetic networks, which model complex evolutionary processes including hybridization and gene flow, remains a central challenge in evolutionary biology. Until now, statistically consistent inference methods have been limited to phylogenetic level-1 networks, ...
The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restric ...
The maximum parsimony distance dMP(T1,T2) and the bounded-state maximum parsimony distance dMPt(T1,T2) measure the difference between two phylogenetic trees T1,T2 in terms of the ma ...
This paper studies the relationship between undirected (unrooted) and directed (rooted) phylogenetic networks. We describe a polynomial-time algorithm for deciding whether an undirected nonbinary phylogenetic network, given the locations of the root and reticulation vertices, can ...
How many reticulations are needed for a phylogenetic network to display a given set of k phylogenetic trees on n leaves? For k = 2, Baroni et al. [Ann. Comb. 8, 391-408 (2005)] showed that the answer is n − 2. Here, we show that, for k ≥ 3 the answer is at least (3 /2 − ε)n. Conc ...
Phylogenetic networks are used to represent the evolutionary history of species. Recently, the new class of orchard networks was introduced, which were later shown to be interpretable as trees with additional horizontal arcs. This makes the network class ideal for capturing evolu ...
Background: Combining a set of phylogenetic trees into a single phylogenetic network that explains all of them is a fundamental challenge in evolutionary studies. Existing methods are computationally expensive and can either handle only small numbers of phylogenetic trees or are ...
Graph invariants are a useful tool in graph theory. Not only do they encode useful information about the graphs to which they are associated, but complete invariants can be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs such as the well-known ...
Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called Tree Containment, arises when validating networks constructed by phylogenetic inference methods. We present the first algorithm for ...
Combining a set of phylogenetic trees into a single phylogenetic network that explains all of them is a fundamental challenge in evolutionary studies. In this paper, we apply the recently-introduced theoretical framework of cherry picking to design a class of heuristics that are ...