MJ
M.E.L. Jones
31 records found
1
Phylogenetic networks are graphs that are used to represent evolutionary relationships between different taxa. They generalize phylogenetic trees since for example, unlike trees, they permit lineages to combine. Recently, there has been rising interest in semi-directed phylogenet
...
Maximum agreement forests have been used as a measure of dissimilarity of two or more phylogenetic trees on a given set of taxa. An agreement forest is a set of trees that can be obtained from each of the input trees by deleting edges and suppressing degree-2 vertices. A maximum
...
Network Phylogenetic Diversity (Network-PD) is a measure for the diversity of a set of species based on a rooted phylogenetic network (with branch lengths and inheritance probabilities on the reticulation edges) describing the evolution of those species. We consider the Max-Netwo
...
With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately rep
...
Semi-directed networks are partially directed graphs that model evolution where the directed edges represent reticulate evolutionary events. We present an algorithm that reconstructs binary n-leaf semi-directed level-1 networks in O(n
2) time from its qua
...
How many reticulations are needed for a phylogenetic network to display a given set of k phylogenetic trees on n leaves? For k = 2, Baroni et al. [Ann. Comb. 8, 391-408 (2005)] showed that the answer is n − 2. Here, we show that, for k ≥ 3 the answer is at least (3 /2 − ε)n. Conc
...
This paper studies the relationship between undirected (unrooted) and directed (rooted) phylogenetic networks. We describe a polynomial-time algorithm for deciding whether an undirected nonbinary phylogenetic network, given the locations of the root and reticulation vertices, can
...
The maximum parsimony distance dMP(T1,T2) and the bounded-state maximum parsimony distance dMPt(T1,T2) measure the difference between two phylogenetic trees T1,T2 in terms of the ma
...
Phylogenetic Diversity (PD) is a measure of the overall biodiversity of a set of present-day species (taxa) within a phylogenetic tree. We consider an extension of PD to phylogenetic networks. Given a phylogenetic network with weighted edges and a subset S of leaves, the all-path
...
Phylogenetic networks are used to represent the evolutionary history of species. Recently, the new class of orchard networks was introduced, which were later shown to be interpretable as trees with additional horizontal arcs. This makes the network class ideal for capturing evolu
...
Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called Tree Containment, arises when validating networks constructed by phylogenetic inference methods. We present the first algorithm for
...
Recently it was shown that a certain class of phylogenetic networks, called level-2 networks, cannot be reconstructed from their associated distance matrices. In this paper, we show that they can be reconstructed from their induced shortest and longest distance matrices. That is,
...
Phylogenetic networks are used in biology to represent evolutionary histories. The class of orchard phylogenetic networks was recently introduced for their computational benefits, without any biological justification. Here, we show that orchard networks can be interpreted as tree
...
We study the problem of finding a temporal hybridization network containing at most k reticulations, for an input consisting of a set of phylogenetic trees. First, we introduce an FPT algorithm for the problem on an arbitrary set of m binary trees with n leaves each with a runnin
...
In the NP-hard Longest Common Subsequence problem (LCS), given a set of strings, the task is to find a string that can be obtained from every input string using as few deletions as possible. LCS is one of the most fundamental string problems with numerous applications in various
...
We present the first fixed-parameter algorithm for constructing a tree-child phylogenetic network that displays an arbitrary number of binary input trees and has the minimum number of reticulations among all such networks. The algorithm uses the recently introduced framework of c
...
Maximum parsimony distance on phylogenetic trees
A linear kernel and constant factor approximation algorithm
Maximum parsimony distance is a measure used to quantify the dissimilarity of two unrooted phylogenetic trees. It is NP-hard to compute, and very few positive algorithmic results are known due to its complex combinatorial structure. Here we address this shortcoming by showing tha
...
Phylogenetic networks are used to represent evolutionary relationships between species in biology. Such networks are often categorized into classes by their topological features, which stem from both biological and computational motivations. We study two network classes in this p
...
Phylogenetic networks can represent evolutionary events that cannot be described by phylogenetic trees. These networks are able to incorporate reticulate evolutionary events such as hybridization, introgression, and lateral gene transfer. Recently, network-based Markov models of
...