Computational Ultrasound Carotid Artery Imaging with a Few Transceivers
An Emulation Study
Yuyang Hu (Erasmus MC)
D. Doğan (TU Delft - Signal Processing Systems)
Michael Brown (Erasmus MC)
GJT Leus (TU Delft - Signal Processing Systems)
A. F.W. Steen (Erasmus MC)
Pieter Kruizinga (Erasmus MC)
Johannes G. Bosch (Erasmus MC)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Ultrasonography could allow operator-independent examination and continuous monitoring of the carotid artery (CA) but normally requires complex and expensive transducers, especially for 3-D. By employing computational ultrasound imaging (cUSi), using an aberration mask and model-based reconstruction, a monitoring device could be constructed with a more affordable simple transducer design comprising only a few elements. We aim to apply the cUSi concept to create a CA monitoring system. The system’s possible configurations for the 2-D imaging case were explored using a linear array setup emulating a cUSi device in silico, followed by in vitro testing and in vivo CA imaging. Our study shows enhanced reconstruction performance with the use of an aberrating mask, improved lateral resolution through proper choice of the mask delay variation, and more accurate reconstructions using least-squares with QR (LSQR) decomposition compared to matched filtering (MF). Together, these advancements enable B-mode reconstruction and power Doppler imaging (PDI) of the CA with sufficient quality for monitoring using a configuration of 12 transceivers coupled with a random aberration mask with a maximum delay variation of four wave periods (WPs).
Files
File under embargo until 13-10-2025