Crop-Growth Driven Forward-Modeling of Sentinel-1 Observables Using Machine-Learning
T. Nikaein (TU Delft - Mathematical Geodesy and Positioning)
SC Steele-Dunne (TU Delft - Mathematical Geodesy and Positioning)
Francisco Dekker (TU Delft - Mathematical Geodesy and Positioning)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents an approach to implement a forward model for Sentinel-1 copol and crosspol backscatter and coherence using crop bio-geophysical parameters namely leaf area index, biomass, canopy height, soil moisture and root zone moisture as inputs for the maize. These required input parameters are generated using Decision Support System for Agrotechnology Transfer (DSSAT), one of the state-of-the-art crop growth models. The predicted SAR signal is generated using Support Vector Regression (SVR) over all the maize fields in an agricultural region, Flevoland, Netherlands. The correlation between simulated signal and observed signal is evaluated.