A viscoplasticity model with an invariant-based non-Newtonian flow rule for unidirectional thermoplastic composites

Journal Article (2025)
Author(s)

P. Hofman (TU Delft - Applied Mechanics)

D. Kovačević (TU Delft - Applied Mechanics)

F.P. van der Meer (TU Delft - Applied Mechanics)

Bert Sluijs (TU Delft - Applied Mechanics)

Research Group
Applied Mechanics
DOI related publication
https://doi.org/10.1016/j.mechmat.2025.105507
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Applied Mechanics
Volume number
211
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

A three-dimensional mesoscopic viscoplasticity model for simulating rate-dependent plasticity and creep in unidirectional thermoplastic composites is presented. The constitutive model is a transversely isotropic extension of an isotropic finite strain viscoplasticity model for neat polymers. Rate-dependent plasticity and creep are described by a non-Newtonian flow rule where the viscosity of the material depends on an equivalent stress measure through an Eyring-type relation. In the present formulation, transverse isotropy is incorporated by defining the equivalent stress measure and flow rule as functions of transversely isotropic stress invariants. In addition, the Eyring-type viscosity function is extended with anisotropic pressure dependence. As a result of the formulation, plastic flow in fiber direction is effectively excluded and pressure dependence of the polymer matrix is accounted for. The re-orientation of the transversely isotropic plane during plastic deformations is incorporated in the constitutive equations, allowing for an accurate large deformation response. The formulation is fully implicit and a consistent linearization of the algorithmic constitutive equations is performed to derive the consistent tangent modulus. The performance of the mesoscopic constitutive model is assessed through a comparison with a micromechanical model for carbon/PEEK, with the original isotropic viscoplastic version for the polymer matrix and with hyperelastic fibers. The micromodel is first used to determine the material parameters of the mesoscale model with a few stress–strain curves. It is demonstrated that the mesoscale model gives a similar response to the micromodel under various loading conditions. Finally, the mesoscale model is validated against off-axis experiments on unidirectional thermoplastic composite plies.