Full-stack quantum computing systems in the NISQ era
Algorithm-driven and hardware-aware compilation techniques
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The progress in developing quantum hardware with functional quantum processors integrating tens of noisy qubits, together with the availability of near-term quantum algorithms has led to the release of the first quantum computers. These quantum computing systems already integrate different software and hardware components of the so-called “full-stack”, bridging quantum applications to quantum devices. In this paper, we will provide an overview on current full-stack quantum computing systems. We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design to extract the most from noisy intermediate-scale quantum (NISQ) processors which are both error-prone and severely constrained in resources. As an example of co-design, we will focus on the development of hardware-aware and algorithm-driven compilation techniques.