Warping model predictive control for application in control of a real airborne wind energy system
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Fast online generation of feasible and optimal reference trajectories is crucial in tracking model predictive control, especially for stability and optimality in presence of a time varying parameter. In this paper, in order to circumvent the operational efforts of handling a discrete set of precomputed trajectories and switching between them, time warping of a single trajectory is proposed as an alternative concept. In particular, the conceptual ideas of warping theory are presented and illustrated based on the example of a tethered kite system for airborne wind energy. In detail, for warpable systems, feasibility and optimality of trajectories are discussed. Subsequently, the full algorithm of a nonlinear model predictive control implementation based on warping a single precomputed reference is presented. Finally, the warping algorithm is applied to the airborne wind energy system. Simulation results in presence of real world perturbations are evaluated and compared.