Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors

inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities.

Journal Article (2017)
Author(s)

Samet Azman (Wageningen University & Research)

Ahmad F. Khadem (Wageningen University & Research, TU Delft - Sanitary Engineering)

Caroline M. Plugge (Wageningen University & Research)

Alfons J M Stams (Wageningen University & Research)

Sabina Bec (Wageningen University & Research)

Grietje Zeeman (Wageningen University & Research)

Research Group
Sanitary Engineering
Copyright
© 2017 Samet Azman, A.F. Khadem, Caroline M. Plugge, Alfons J M Stams, Sabina Bec, Grietje Zeeman
DOI related publication
https://doi.org/10.1007/s00253-016-8010-x
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 Samet Azman, A.F. Khadem, Caroline M. Plugge, Alfons J M Stams, Sabina Bec, Grietje Zeeman
Research Group
Sanitary Engineering
Issue number
2
Volume number
101
Pages (from-to)
889-901
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Inhibition effect of humic acid (HA) on anaerobic digestion of cellulose and xylan and the mitigation potential of the inhibition were evaluated in controlled fed batch reactors at 30 °C and a hydraulic retention time (HRT) of 20 days. Reactor performances were evaluated by biogas production and metabolite measurements for 220 days. Microbial population dynamics of the reactors were monitored with next-generation 16S rRNA gene sequencing at nine different sampling times. Our results showed that increasing levels of HA inhibited the hydrolysis efficiency of the digestion by 40% and concomitantly reduced the methane yield. Addition of hydrolytic enzymes helped to reverse the negative effects of HA, whereas calcium addition did not reverse HA inhibition. Microbiological analyses showed that the relative abundance of hydrolytic/fermentative bacterial groups such as Clostridiales, Bacteroidales and Anaerolineales was significantly lowered by the presence of HA. HA also affected the archaeal populations. Mostly hydrogenotrophic methanogens were negatively affected by HA. The relative abundance of Methanobacteriaceae, Methanomicrobiales-WCHA208 and Unassigned Thermoplasmata WCHA1-57 were negatively affected by the presence of HA, whereas Methanosaetacea was not affected.