Evaluation of short-term streamflow prediction methods in Urban river basins
Xinxing Huang (Southern University of Science and Technology , Shanghai Institute of Technology)
Yifan Li (Southern University of Science and Technology )
Zhan Tian (Southern University of Science and Technology )
Qinghua Ye (Deltares)
Q. Ke (TU Delft - Hydraulic Structures and Flood Risk)
Dongli Fan (Shanghai Institute of Technology)
Ganquan Mao (Southern University of Science and Technology )
Aifang Chen (Southern University of Science and Technology )
Junguo Liu (Southern University of Science and Technology )
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Efficient and accurate streamflow predictions are important for urban water management. Data-driven models, especially neural network (NN) models can predict streamflow fast, while the results are uncertain in some complex river systems. Physically based models can reveal the underlying physics, but it is relatively slow and computationally costly. This work focuses on evaluating the reliability of three NN models (artificial neural networks (ANN), long short-term memory networks (LSTM), adaptive neuro-fuzzy inference system (ANFIS)) and one physically based model (SOBEK) in terms of efficiency and accuracy for average and peak streamflow simulation. All the models are applied for a tidal river and a mountainous river in Shenzhen. The results show that, the ANN model calculates fastest since the hidden layer's structure is simple. The LSTM model is reliable in average streamflow simulation in tidal river with the lowest bias while the ANFIS model has the best accuracy for peak streamflow simulation. Furthermore, the SOBEK model shows reliability in simulating average and peak streamflow in mountainous river due to its ability to capture uneven spatial rainfall in the area. Overall, the results indicate that the LSTM model can be a helpful supplementary to physically based models in streamflow simulation of complex urban river systems, by giving fast streamflow predictions with usually acceptable accuracy. Our results can provide helpful information for hydrological engineers in the application of flooding early warning and emergency preparedness in the context of flooding risk management.