Design, Fabrication, Testing and Modeling of a Vaporizing Liquid Micro-Propulsion System
A Cervone (TU Delft - Space Systems Egineering)
BTC Zandbergen (TU Delft - Space Systems Egineering)
H.W. Van Zeijl (TU Delft - EKL Processing)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In the last decade, CubeSat development has shown the potential to allow for low-risk, low-cost space missions. To further improve the capabilities of CubeSats in large scale missions, a novel micro-propulsion system is being developed at Delft University of Technology. The system is based on a Vaporizing Liquid Microthruster (VLM), which is manufactured by means of Micro Electro-Mechanical Systems (MEMS) technology. It aims to achieve a specific impulse of 100 s and thrust of 1.4 mN, using water as propellant. This paper presents a status update of the development project. Design solutions are shown to circumvent manufacturing tolerances in the wafer-bonding and sealing of the interfaces of the VLM. Secondly, performance analysis based on a 1D-flow approximation is shown to provide a useful tool to quickly predict VLM performance. Next, a detailed design of the propellant storage tank for the CubeSat micro-propulsion system is presented. Finally, the test plan and test setup for the VLM are elaborated, presenting solutions to determine chamber temperature and pressure without directly sensing it.