Reducing beam tracking complexity using a phase ramp and Fresnel lens when steering beams using spatial light modulators
Joshua Spaander (TU Delft - Space Systems Egineering)
J Guo (TU Delft - Space Systems Egineering)
R. Saathof (TU Delft - Space Systems Egineering)
Eberhard K.A. Gill (TU Delft - Space Systems Egineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Steering multiple laser beams using spatial light modulators (SLMs) creates unwanted diffraction and reflections that are not modulated by the SLM, which can make beam tracking difficult. A novel, to the best of our knowledge, and simple beam steering methodology is proposed, which aims at reducing the influence of this clutter while maintaining tracking performance. The beam(s) are deliberately defocused before steering with a superposition of a phase ramp and Fresnel lens (PRFL) phase screen on the SLM. As a result, the non-modulated reflections and diffracted light are decreased in relative intensity to the steered beam, in turn allowing simple and standard peak intensity and center of gravity (CG) algorithms for tracking. Hardware demonstration shows tracking performance using the PRFL remained on-par with more complex filtering approaches while adding no additional hardware. This method has potential to improve the communication performance of multi-beam laser communication terminals.