SpikingSoft

A Spiking Neuron Controller for Bio-inspired Locomotion with Soft Snake Robots

Conference Paper (2025)
Author(s)

Chuhan Zhang (TU Delft - Learning & Autonomous Control)

C. Wang (TU Delft - Learning & Autonomous Control)

Wei Pan (The University of Manchester)

C. Della Santina (TU Delft - Learning & Autonomous Control)

Research Group
Learning & Autonomous Control
DOI related publication
https://doi.org/10.1109/RoboSoft63089.2025.11020907
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Learning & Autonomous Control
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/publishing/publisher-deals Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
ISBN (electronic)
979-8-3315-2020-5
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Inspired by the dynamic coupling of moto-neurons and physical elasticity in animals, this work explores the possibility of generating locomotion gaits by utilizing physical oscillations in a soft snake by means of a low-level spiking neural mechanism. To achieve this goal, we introduce the Double Threshold Spiking neuron model with adjustable thresholds to generate varied output patterns. This neuron model can excite the natural dynamics of soft robotic snakes, and it enables distinct movements, such as turning or moving forward, by simply altering the neural thresholds. Finally, we demonstrate that our approach, termed SpikingSoft, naturally pairs and integrates with reinforcement learning. The high-level agent only needs to adjust the two thresholds to generate complex movement patterns, thus strongly simplifying the learning of reactive locomotion. Simulation results demonstrate that the proposed architecture significantly enhances the performance of the soft snake robot, enabling it to achieve target objectives with a 21.6% increase in success rate, a 29% reduction in time to reach the target, and smoother movements compared to the vanilla reinforcement learning controllers or Central Pattern Generator controller acting in torque space.

Files

License info not available
warning

File under embargo until 04-12-2025