On the Optimal Azimuth Offset for Individual Pitch Control in Aeroelastic Code Coupled with a High-Fidelity Flow Solver
A. A.W. van Vondelen (TU Delft - Team Jan-Willem van Wingerden)
Atindriyo Kusumo Pamososuryo (TU Delft - Team Jan-Willem van Wingerden)
ST Navalkar (Siemens Gamesa Renewable Energy)
Jan Willem Wingerden (TU Delft - Team Jan-Willem van Wingerden)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
To justify the use of two single-input single-output (SISO) control loops instead of more complex multi-input multi-output (MIMO) control, the axes in a wind turbine's pitch control system should be fully decoupled using the multi-blade coordinate transform. To achieve that, usually, an azimuth offset is required, correcting for phase lags originating from, e.g., actuator delays and blade flexibility. In wind turbine simulations, this parameter is commonly obtained by analysis of the linearized turbine models. This work, however, demonstrates that analyzing linearized turbine models is not sufficient for correcting the full phase lag when coupling wind turbine simulation tools to large-eddy simulators (LES), since additional phase lags may arise. Instead, this work proposes deriving the azimuth offset using data-driven modelling directly in coupled LES, where data is generated by exciting the structure with pseudo-random binary noise. Using this approach it was found that the optimal azimuth offset is three degrees higher than when using the linearized model, which demonstrates that deriving the optimal azimuth offset from linearized models is not suitable for coupled simulations.