Hybrid Tunable Magnet Actuator
Design of a Linearized Force-Flux Tunable Magnet Actuator
William B. Hoekwater (Student TU Delft)
E.P. Ronaes (TU Delft - Mechatronic Systems Design)
S.H. Hassan HosseinNia (TU Delft - Mechatronic Systems Design)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Recent studies have shown that tunable magnets (soft permanent magnets) can significantly reduce Joule heating in electromagnetic actuators. To achieve high motion accuracy and repeatability, this article proposes a novel actuator design with a linearized force-flux relation. In prior designs of variable reluctance tunable magnet actuators, the force and flux are related quadratically via a C-shaped actuator. Hybrid tunable magnet actuators based on biased fluxes are developed using lumped parameter models. Using finite element analysis, it is shown that the force-flux relation is symmetric linear around the mid position depending on the magnetic flux direction in the magnet. Within a position range of ±500 μm and a force range of ±20 N, the linear fit produces a negligible error of 0.08 N. Finally, this linear relationship is validated with a 0.03-N error in an experimental setup.