S.H. Hossein Nia Kani
120 records found
1
Active damping control of higher-order resonance mode in positioning systems
Application to prototype compliant dual positioning stage
In precision positioning systems, lightly damped higher-order resonance modes can induce undesirable vibrations that degrade system performance and accuracy. These resonances pose additional challenges in non-collocated dual-stage positioning systems, where they significantly lim
...
Contactless handling systems for substrates hold significant potential in enhancing chip manufacturing yields by allowing the use of thinner and larger substrates, eliminating the risks associated with physical contact. This article introduces a novel contactless force actuator,
...
This article introduces an output prediction method for a general class of closed-loop reset control systems. The considered type of system consists of a linear time-invariant (LTI) part which is connected in feedback with a reset controller that (partially) resets (a part of) it
...
In this note, we present an extension of the nonlinear negative imaginary (NI) systems theory to reset systems. We define the reset negative imaginary (RNI) and reset strictly negative imaginary (RSNI) systems and provide a state-space characterization of these systems in terms o
...
Reset control enhances the performance of high-precision mechatronics systems. This paper introduces a generalized reset feedback control structure that integrates a single reset-state reset controller, a shaping filter for tuning reset actions, and linear compensators arranged i
...
Active Piezoelectric Metastructures
Relationship of Bandgap Formation With Unit Cell Number and Modal Behaviour
Elastic piezoelectric metastructures with actively implemented resonators offer an opportunity for novel vibration attenuation solutions, thanks to the possibility of creating bandgaps at low frequencies, their tuneability and compactness. We focus on metastructures with sensors
...
Enhancing reset control phase with lead shaping filters
Applications to precision motion systems
This study presents a shaped reset feedback control strategy to enhance the performance of precision motion systems. The approach utilizes a phase-lead compensator as a shaping filter to tune the phase of reset instants, thereby shaping the nonlinearity in the first-order reset c
...
This article introduces output prediction methods for two types of systems containing sinusoidal-input uniformly convergent (SIUC) elements. The first method considers these elements in combination with single-input single-output linear time-invariant (LTI) systems before, after,
...
Piezoelectric Compensation of Structural Damping in Metamaterial Beams
Stability and Performance Analysis
This paper examines the stability implications of integrating piezoelectric actuators into metamaterial beams, focusing on the compensation of structural damping and its effect on the system's dynamic performance. Metamaterials, characterized by their unique bandgap properties, o
...
When a linear controller is replaced by a reset controller, it is possible to keep the gain behaviour essentially the same, while improving the phase behaviour. However, because reset control is nonlinear, higher order harmonics appear, which may deteriorate the results. In this
...
Bandgaps—frequency ranges with reduced vibration transmissibility in elastic structures, are an opportunity for vibration control originating from the research on elastic metamaterials. In this paper, we study the design for bandgap in slender beams with collocated piezoelectric
...
In non-collocated compliant positioning systems, the parasitic resonance peak induces undesirable vibrations, limiting control bandwidth. Despite conventional notch filters being employed alongside PID controllers for improving bandwidth, parasitic resonance effects persist in di
...
This study explores the optimization of bandgap characteristics in locally resonant metastructures through advanced artificial intelligence (AI) and optimization algorithms, focusing on the accurate estimation of resonator damping ratios. By developing a novel mathematical framew
...
Incorporating actively implemented resonators within elastic piezoelectric metastructures presents a unique approach for vibration attenuation, enabling the creation of tuneable low-frequency bandgaps. Through feedback control, we enhance the compactness of these metastructures b
...
This article explores internally coupled resonators in metamaterial systems, focusing on mechanical and electromechanical coupling. The article provides a thorough examination of stability within the context of internally coupled resonators. It establishes stability criteria, emp
...
Current reset elements mainly rely on the traditional zero-crossing resetting mechanism. This study introduces a reset element with a new resetting mechanism that distributes multiple resets within a single period for reset controllers with sinusoidal reference inputs. This new c
...
Exploring the Real-World Challenges and Efficacy of Internal Coupling in Metastructures
An Experimental Perspective
Metastructures with internally coupled resonators promise enhanced vibration control and energy harvesting capabilities by theoretically enabling multiple bandgaps. This paper investigates the feasibility of these theoretical benefits under practical constraints, particularly the
...
In this paper, the higher-order sinusoidal-input describing function (HOSIDF) of the fractional-order hybrid integrator-gain system (HIGS) is derived analytically. The HIGS element, designed as a nonlinear component, aims to overcome limitations inherent in linear control, such a
...
Reset controllers have demonstrated their efficacy in enhancing transient responses, such as the overshoot and response time in motion control systems. Designing these systems to meet specific transient requirements requires a method for analyzing transient responses. However, th
...